• Skip to primary navigation
  • Skip to main content
  • Skip to footer
Logo for the Department of Civil and Environmental Engineering at the University of Michigan
  • Strategic Directions
  • News and Events
  • Contact

  • About
    • History
    • Strategic Directions
    • Diversity, Equity and Inclusion
      • CEE DEI Committee
      • DEI Resources
      • Have a concern?
    • Alumni
      • CEE Friends Association
        • CEEFA Board
      • Award Winners
    • Giving
      • Giving Legacy
    • Leadership and Governance
    • Faculty Search
      • Faculty Position in Environmental Engineering
      • Faculty Position in Intelligent Systems
    • Contact
      • Student Services Contacts
      • Master’s Advising Contacts
      • Undergraduate Advising Contacts
  • Undergraduate Studies
    • BSE Degree in Civil Engineering
    • BSE Degree in Environmental Engineering
    • Minor in Civil Engineering
    • Minor in Environmental Engineering
    • FocusCEE
      • Community Policy and Planning
      • Smart Cities
      • Sustainability
    • Undergraduate Opportunities
      • Undergraduate Externship
      • Student Research and Employment
        • CEE SURE/SROP Projects 2023
    • Schedule an Advising Appointment
    • Declare Your Major
    • Careers in CEE
      • What is a Civil or Environmental Engineer?
      • Career Pathways
      • Employers of CEE Graduates
      • How to Recruit CEE Graduates
    • Undergraduate Student Advisory Council
    • Student Life
  • Graduate Studies
    • Master’s Programs
    • PhD Programs
      • PhD Mentoring Framework
      • PhD Candidate Roster
    • Pelham Scholars Program
    • Online Learning
      • Construction Engineering and Management MasterTrack™
    • Admissions Information
      • International Applicants
      • Sequential Undergraduate/Graduate Studies (SUGS) Applicants
    • Graduate Handbook
    • Graduate Student Advisory Council
    • Student Life
  • People
    • Faculty
      • Affiliated Faculty
      • Core Faculty
      • Emeritus Faculty
    • Postdocs
    • Researchers
    • Staff
      • Administrative
      • Finance
      • Human Resources
      • IT & Web
      • Laboratory Technicians
      • Purchasing
      • Student Services
  • Research
    • New Grants
    • Civil Infrastructure Systems
      • Construction Engineering and Management
      • Geotechnical Engineering
      • Intelligent Systems
      • Next Generation Transportation Systems
      • Structural and Materials Engineering
    • Environment and Water Resources
      • Ecohydrology and Hydraulic Engineering
      • Energy and Clean Technology
      • Environmental Chemistry and Soil Physics
      • Environmental Microbiology and Biotechnology
    • Smart Infrastructure Finance
    • Urban Collaboratory
    • Facilities
      • Advanced Materials Research
      • Cementitious Composites
      • Center of Excellence in Bridges and Structures
      • Computational Community Resilience
      • Computational Structural Simulation
      • Construction Engineering Lab
      • Geotechnical Engineering Labs
      • Intelligent Structural Technology
      • Next Generation Infrastructure
      • Next Generation Transportation Systems Research Facilities
      • Pavement Research Center of Excellence
      • Structural Engineering Lab
  • Resources
    • Shipping
    • Purchasing
      • Purchasing Frequently Asked Questions
    • Reimbursement
    • IT Resources
    • Lab Safety
      • Lab Safety Basics
      • Minimum Training Requirements
    • Lab Requests and Procedures
    • Room Requests
    • Faculty Intranet
    • Strategic Directions
    • News and Events
    • Contact

$9.95M for “smart intersections” across Ann Arbor

Technology embedded in existing infrastructure will provide data to connected and automated vehicles, bolstering safety.

Written by: Jim Lynch

January 7, 2021

portrait of the researcher James SayerJames Sayer
Director and Research Scientist, University of Michigan Transportation Research Institute
A portrait of the researcher Henry LiuHenry Liu
Professor of Civil and Environmental Engineering

EXPERTS:

Ann Arbor will soon be home to more than 20 “smart intersections”—capable of gathering and transmitting information in real time to connected cars—as part of a University of Michigan effort to demonstrate the safety potential of connected and automated vehicles.

The U.S. Department of Transportation’s Federal Highway Administration has awarded U-M $9.95 million toward the effort, which will be headed by University of Michigan Transportation Research Institute (UMTRI). Corporate partners contributed an additional $10 million of in-kind funding.

U-M will receive $3.8 million of those federal dollars directly and administer the remaining $6.2 million to subcontractors.

Intersections will be fitted with cameras, radar and infrared sensors in order to capture what is moving in the area, at what speed and in what direction—everything from cars to pedestrians. That information can be instantaneously sent to connected vehicles in the vicinity, triggering onboard warnings when cars are in dangerous situations.

A birds eye view of Ann Arbor intersection at night
An Ann Arbor intersection. Photo: Marcin Szczepanski/Michigan Engineering

Through the “living laboratory” of the U-M-led Ann Arbor Connected Vehicle Test Environment and its predecessor Safety Pilot Model Deployment, vehicles across the city have been communicating with one another and infrastructure since 2012. At its peak, nearly 3,000 vehicles were involved, making it the largest connected vehicle deployment in the world. These projects provided evidence that connected vehicles have the potential to reduce unimpaired crashes by 90%.

Despite advances in technology, connected and automated vehicles still have blind spots, and sensors can still be fooled on occasion by things like poor weather.

Henry Liu, a U-M professor of civil and environmental engineering and a research professor at UMTRI, said sensors placed at intersections can provide additional data to those vehicles wirelessly, enhancing their capacity to detect dangers.

“One way to overcome the physical limitations of the onboard technology is to have these sensors placed locally that can provide information in situations where, say, line of sight is being blocked by a bus, or some other barrier,” said Liu. “Roadside sensors can detect a possible danger that is blocked, and broadcast that danger’s information to the vehicle.”

Connected and automated vehicles would be alerted by the broadcast, which would trigger whatever warning system that model comes equipped with—beeping, vibrations, etc.

In addition to improving safety, the project is also designed to provide low-cost proof of the viability of connected vehicles. The industry currently faces a “chicken and egg” problem in pushing new technologies into wider usage, the researchers say.

With connected and automated vehicles currently making up a small percentage of the cars on the road today, the potential benefits of the latest safety technologies are hard to demonstrate. And that slow generation of data contributes to a slow adoption of new technologies.

In The News

MLive.com

January 11, 2021

$9.95M going to University of Michigan for 20 ‘smart intersections’ in Ann Arbor

A nearly $10M project bringing smart intersections in Ann Arbor is detailed in MLive.

WXYZ

January 7, 2021

20 ‘smart intersections’ coming to Ann Arbor

Details on a nearly $10M project to bring more smart intersections to Ann Arbor is detailed in WXYZ.

“One of the most promising aspects of this project is that we will be able to pave the way for a national connected and automated vehicle deployment,” said James Sayer, UMTRI’s director. “We will definitively demonstrate not only the technology but a clear path to funding the infrastructure—both aspects needed for a national deployment. Furthermore, the Smart Intersections Project will provide significant Day One benefits to early adopters, including saving pedestrian lives.”

The three-year project falls under DOT’s Advanced Transportation and Congestion Management Technologies Deployment Program, designed to fund model programs that lead to the “installation and operation of advanced transportation technologies to improve safety, efficiency, system performance and infrastructure return on investment.”

U-M’s public and private partners on the project are: Ford, Toyota, Qualcomm, the City of Ann Arbor, Continental, Iteris, WSP, P3Mobility, Econolite, and Purdue University.

Explore: Civil and Environmental Engineering Infrastructure Research Transporation Automotive Autonomy in Infrastructure Connected and Automated Vehicles Henry Liu James Sayer

Footer

Logo for Michigan Engineering at the University of Michigan

  • Giving
  • News and Events
  • Contact
  • Sign up for our newsletter
  • U-M Engineering Home
  • Strategic Vision
  • Graduate and Professional
  • Undergraduate
  • U-M Engineering Research News
  • U-M Home

  • Giving
  • News and Events
  • Contact
  • Sign up for our newsletter

© 2023 The Regents of the University of Michigan Ann Arbor, MI 48109 USA Privacy Policy | Non-Discrimination Policy | Campus Safety

  • Facebook
  • Instagram
  • LinkedIn
  • Twitter
  • YouTube