• Skip to primary navigation
  • Skip to main content
  • Skip to footer
Logo for the Department of Civil and Environmental Engineering at the University of Michigan
  • Giving
  • News and Events
  • Contact

  • About
    • History
    • Strategic Directions
    • Diversity, Equity and Inclusion
      • CEE DEI Committee
      • DEI Resources
      • Have a concern?
    • Alumni
      • CEE Friends Association
        • CEEFA Board
      • Award Winners
    • Giving
      • Giving Legacy
    • Leadership and Governance
    • Faculty Search
      • Faculty Position in Environmental Engineering
      • Faculty Position in Intelligent Systems
    • Contact
      • Student Services Contacts
      • Master’s Advising Contacts
      • Undergraduate Advising Contacts
  • Undergraduate Studies
    • BSE Degree in Civil Engineering
    • BSE Degree in Environmental Engineering
    • Minor in Civil Engineering
    • Minor in Environmental Engineering
    • FocusCEE
      • Community Policy and Planning
      • Smart Cities
      • Sustainability
    • Undergraduate Opportunities
      • Undergraduate Externship
      • Student Research and Employment
        • CEE SURE/SROP Projects 2023
    • Schedule an Advising Appointment
    • Declare Your Major
    • Careers in CEE
      • What is a Civil or Environmental Engineer?
      • Career Pathways
      • Employers of CEE Graduates
      • How to Recruit CEE Graduates
    • Undergraduate Student Advisory Council
    • Student Life
  • Graduate Studies
    • Master’s Programs
    • PhD Programs
      • PhD Mentoring Framework
      • PhD Candidate Roster
    • Pelham Scholars Program
    • Online Learning
      • Construction Engineering and Management MasterTrack™
    • Admissions Information
      • International Applicants
      • Sequential Undergraduate/Graduate Studies (SUGS) Applicants
    • Graduate Handbook
    • Graduate Student Advisory Council
    • Student Life
  • People
    • Faculty
      • Affiliated Faculty
      • Core Faculty
      • Emeritus Faculty
    • Postdocs
    • Researchers
    • Staff
      • Administrative
      • Finance
      • Human Resources
      • IT & Web
      • Laboratory Technicians
      • Purchasing
      • Student Services
  • Research
    • New Grants
    • Civil Infrastructure Systems
      • Construction Engineering and Management
      • Geotechnical Engineering
      • Intelligent Systems
      • Next Generation Transportation Systems
      • Structural and Materials Engineering
    • Environment and Water Resources
      • Ecohydrology and Hydraulic Engineering
      • Energy and Clean Technology
      • Environmental Chemistry and Soil Physics
      • Environmental Microbiology and Biotechnology
    • Smart Infrastructure Finance
    • Urban Collaboratory
    • Facilities
      • Advanced Materials Research
      • Cementitious Composites
      • Center of Excellence in Bridges and Structures
      • Computational Community Resilience
      • Computational Structural Simulation
      • Construction Engineering Lab
      • Geotechnical Engineering Labs
      • Intelligent Structural Technology
      • Next Generation Infrastructure
      • Next Generation Transportation Systems Research Facilities
      • Pavement Research Center of Excellence
      • Structural Engineering Lab
  • Resources
    • Shipping
    • Purchasing
      • Purchasing Frequently Asked Questions
    • Reimbursement
    • IT Resources
    • Lab Safety
      • Lab Safety Basics
      • Minimum Training Requirements
    • Lab Requests and Procedures
    • Room Requests
    • Faculty Intranet
    • Giving
    • News and Events
    • Contact

Combining the real and virtual worlds improves driverless vehicle testing

Augmented reality technology at the University of Michigan makes testing faster, cheaper, safer

Written by: michiganengineering

November 19, 2018

An image of a screen showing a virtual train crossing at Mcity.
An image of the screen in the Michigan Traffic Lab while a virtual train (in green) travels through a rail crossing at Mcity. Real (red) and simulated vehicles (blue) react. Credit: Screen capture from a video by Mike Wood

Augmented reality technology can accelerate testing of connected and automated vehicles by 1,000 to 100,000 times, and reduce additional testing costs — beyond the price of physical vehicles — to almost zero, according to a new white paper published by Mcity.

Augmented reality combines the real world with a virtual world to create a faster, more efficient and economical approach to testing connected and automated vehicles at the University of Michigan’s Mcity Test Facility.

This unique testing methodology is outlined in the new white paper, published today. Mcity is a U-M led public-private partnership working to advance the development of connected and automated vehicles.

“In order for the public to accept and widely adopt driverless vehicles we must be able to prove they are safe and trustworthy,” said Henry Liu, an author of the paper. Liu is professor of civil and environmental engineering, and research professor at the U-M Transportation Research Institute (UMTRI).

“This requires rigorous and extensive testing that would otherwise take more than a decade to accomplish,” Liu said. “Augmented reality testing is not only more efficient, it is safer and will allow us to ensure driverless vehicles operate dependably with the ability to prevent and avoid crashes.”

Augmented reality testing is not only more efficient, it is safer and will allow us to ensure driverless vehicles operate dependably with the ability to prevent and avoid crashes.

Henry Liu, CEE professor and research professor at the U-M Transportation Research Institute (UMTRI)

A Working Combination

Liu and his team borrowed from video-gaming and other virtual technologies to create an augmented reality environment where real vehicles inside the safety of U-M’s Mcity Test Facility can interact with and react to computer-generated vehicles in real time through connected vehicle communications.

The test facility, located on U-M’s North Campus in Ann Arbor, features more than 16 acres of roads and traffic infrastructure. The grounds include urban and suburban streets with intersections, multiple lane configurations, sidewalks, traffic signs and signals, simulated buildings, bikes lanes and more.

Researchers are able to create testing scenarios and interactions between test vehicles and computer-generated vehicles from the Michigan Traffic Laboratory at UMTRI. The traffic lab is also the control center for the Mcity Test Facility. According to the white paper, an observer of such a test might see a test vehicle approach a traffic light and stop several yards short of the intersection to avoid rear-ending a computer-generated car already stopped at the light.

The computer-generated virtual traffic elements are broadcast to Mcity test vehicles using a patent-pending, secure, wireless technology to allow both real and virtual vehicles to communicate with each other and to the test-course infrastructure. This patent-pending technology was developed by Liu and Yiheng Feng, an assistant research scientist at UMTRI.

“Our new procedure shows great potential to speed up and reduce the cost of testing,” Liu said. “It also has the added benefit of allowing us to build a virtual library of computer-generated traffic scenarios that can be practiced without risk of damage or human injuries.”

An image of a screen showing a map of Mcity with paths of virtually connected vehicles at Mcity.
Virtual connected vehicles (blue) can be seen traveling at Mcity alongside real connected and automated vehicles (red). This unique type of augmented reality can dramatically accelerate testing of connected and automated vehicles and enable researchers to test scenarios in a safer, more cost-effective manner. Credit: Screen capture from a video by Mike Wood

Conquering Challenges

Researchers now test fully automated vehicles using three methods: Closed-course testing; computer generated simulations; and operating vehicles or components on public roads. But testing these new technologies on public roads comes with legal risks, exposure to liabilities, and concern for public safety.
From 2014 to 2017, 11 suppliers and manufacturers reported 26 crashes while testing self-driving technology on public roads in California, according to the white paper. In 2018, an Arizona woman was killed by a driverless vehicle operated by Uber as she walked her bicycle across a street.

Developing automated vehicles also comes with added challenges compared to conventional, driver-piloted cars and trucks. Beyond testing for dependability and occupant safety, driverless vehicles must work to prevent and avoid crashes. This requires testing countless crash scenarios, including those that rarely occur with conventional vehicles.

According to the National Highway Traffic Safety Administration, an accident serious enough to report to police — one resulting in at least $1,000 worth of damage — occurs once in every 530,000 miles of driving. A fatal crash typically occurs once in every 100 million miles.

“Most strategies for testing automated vehicles today fall short of what is needed to ensure the safety necessary to make driverless technology viable,” said Huei Peng, director of Mcity and the Roger L. McCarthy Professor of Mechanical Engineering at U-M. “The augmented reality environment at the Mcity Test Facility brings us a step closer by offering comprehensive, limitless testing scenarios that can be accomplished in a shorter period of time. That means testing is faster, cheaper, and safer.”

The white paper is titled, “Real World Meets Virtual World:
Augmented Reality Makes Driverless Vehicle Testing Faster, Safer, and Cheaper.”
 The researchers have applied for patent protection.

Explore: Civil and Environmental Engineering Mechanical Engineering Research Transporation Automotive Autonomous vehicles Henry Liu Huei Peng Yiheng Feng

Footer

Logo for Michigan Engineering at the University of Michigan

  • Giving
  • News and Events
  • Contact
  • Sign up for our newsletter
  • U-M Engineering Home
  • Strategic Vision
  • Graduate and Professional
  • Undergraduate
  • U-M Engineering Research News
  • U-M Home

  • Giving
  • News and Events
  • Contact
  • Sign up for our newsletter

© 2023 The Regents of the University of Michigan Ann Arbor, MI 48109 USA Privacy Policy | Non-Discrimination Policy | Campus Safety

  • Facebook
  • Instagram
  • LinkedIn
  • Twitter
  • YouTube